Задачи по финансам
б) K = 20000×I10/1212 = 20000×(1 + 10/(100×12))12 = 20000×1.105 = 22094 д.е.
При антисипативном (a) способе расчета сложных процентов:
Kmn = K×Iq/mmn, Iq/m = 100m/(100m - q),
где q – годовой прцент.
а) K = 20000×(100×4/(100×4 – 10))4 = 20000×1.107 = 22132 д.е.
б) K = 20000×(100×12/(100×12 – 10))12 = 20000×1.106 = 22132 д.е.
Задача 6. Номинальная годовая ставка – 30%. Найти уравнивающую процентную ставку при начислении сложных процентов каждые 3 месяца.
Решение
= 6.779%.
Задача 7. По одному из вкладов в банке в течение 20 лет накоплено 200 000 д.е. Найти сумму, положенную на счет первоначально, если годовая процентная ставка (d) составляет 8%.
Решение
K0 = Kn×r-n = Kn×II8%20 = Kn×(1 + p/100)-n = 200000×(1 + 8/100)-20 = = 200000×0.21454 = 42909 д.е.,
где r = (1 + p/100) – сложный декурсивный коэффициент.
Задача 8. Каждые три месяца в банк вкладывается по 500 д.е. Какова будет совокупная сумма этих вкладов в конце 10-го года при процентной ставке 8% и годовой капитализации.
Решение
Сначала для годовой процентной ставки 8% определим процентную уравнивающую ставку:
=1.9427%
Затем полученную уравнивающую ставку поместим в следующую формулу:
Svmn = u×, где rk = 1 + pk/100,
где v – число вкладов в расчетном периоде,
n - число лет,
m – число капитализаций в год.
тогда
rk = 1 + 1.9427/100 = 1.0194
S4×10 = 500×= 500×60.8157 = 30407.84 д.е.
Задача 9. Насколько увеличатся годовые вклады по 2 000 д.е. в течение 4 лет при 8% годовых, если капитализация производится раз в три месяца и первый вклад вносится в конце первого года.
Решение
,
u1 = u×I2%4 / III2% = 2000×1.0824 / 4.204 = 514.93 д.е.
Snm = 514.93×III2%3×4 + 2000 = 514.93×13.6803 + 2000 = = 9044.41 д.е.
Задача 10. Пусть первый вклад в банк составляет 2000 д.е., а каждый последующий уменьшается на 100 д.е. по отношению к предыдущему. Найти величину вкладов в конце 10-го года, если они производятся ежегодно, постнумерандо, процентная ставка – 4% годовых, капитализация ежегодная.
Решение
Задача 11. Найти текущую стоимость суммы 10 вкладов постнумерандо по 5000 д.е. при 8% годовых, если капитализация осуществляется каждые полгода.
Решение
При ежегодной капитализации:
C0 = a×IVpn = 5000×IV8%10 = 5000×6.71=33550
Задача 12. Пусть величина займа равна 20000 д.е. Амортизация осуществляется одинаковыми аннуитетами в течение 10 лет при 2% годовых. Найти величину выплаты задолженности за второй и третий годы, если капитализация процентов производится ежегодно.
Решение
Таблица 2
План погашения займа (амортизационный план)
Год |
Долг |
Процентный платеж |
Выплата долга |
Аннуитет |
1 |
20000 |
400 |
1826.53 |
2226.53 |
2 |
18173.47 |
363.47 |
1863.06 | |
3 |
16310.41 |
326.21 |
1900.32 |
Пояснения к таблице
Аннуитет вычисляем по формуле:
a = K×Vpn = 20000×V2%10 = 20000×0.1113 = 2226.53 д.е.
Чтобы определить выплату задолженности b1, вычисляем величину процентного платежа I:
I1 = K1×p/100 = 20000×2/100 = 400 д.е.
Выплата задолженности представляет собой разницу между аннуитетом и процентным платежом:
b1 = a – I1 = 2226.53 – 400 = 1826.53 д.е.
Таким образом, после первого года долг сократится на 1826.53 д.е. Остаток долга равен:
K2 = 20000 - 1826.53 = 18173.47 д.е.
Вычислим процентный платеж на остаток долга:
I2 = 18173.47×2/100 = 363.47 д.е.
Вторая выплата составит:
b2 = a – I2 = 2226.53 – 363.47 = 1863.06 д.е.